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Introduction

In machine learning and statistical inference, the ability to quantify uncertainty is paramount, particu-
larly in high-stakes applications such as medical diagnostics, financial risk assessment, and autonomous
systems. Traditional methods for uncertainty quantification often rely on parametric assumptions or
asymptotic approximations, which may fail in nonparametric settings or finite-sample regimes. Unlike
most methods that rely on data distribution assumptions and algorithm characteristics, Conformal
Prediction (CP) offers a powerful framework for constructing distribution-free and algorithm-free pre-
diction intervals with finite-sample validity, requiring only data exchangeability [Lei et al., 2018]. By
leveraging arbitrary predictive models to generate ”conformity scores,” CP provides calibrated uncer-
tainty estimates without assumptions on the underlying data distribution.

A critical challenge arises when the test data deviates from the training distribution, a phenomenon
known as distribution shift. While CP guarantees marginal coverage under exchangeability, its validity
may degrade under covariate shift, where the input distribution changes but the conditional distribu-
tion of outputs remains consistent. Recent work has extended CP to handle such shifts via weighted
conformal inference, which adjusts the calibration process using likelihood ratios between training and
test distributions [Tibshirani et al., 2019]. However, accurately estimating these likelihood ratios re-
mains challenging, and the impact of estimation errors on coverage guarantees has not been thoroughly
quantified.

Similarly, outlier detection, a task inherently linked to identifying distributional anomalies, typically
relies on hypothesis testing to flag observations that deviate significantly from a reference distribution.
Conformal inference naturally lends itself to this task by furnishing p-values that measure the extremity
of test points relative to calibration data [Bates et al., 2021]. Yet, existing methods do not address how
these p-values should be constructed when the test distribution differs from the training distribution.

This work aims at bridging these gaps by developing new theoretical guarantees and practical
methodologies for conformal prediction under distribution shift with applications to outlier detection.
Our contributions are threefold:

e Coverage Error Bound for Likelihood Ratio Estimation: We derive a coverage lower bound show-
ing precisely how likelihood ratio estimation errors impact weighted conformal prediction coverage.

e Weighted Conformal p-Values for Outlier Detection: We introduce new conformal p-values that
maintain validity for outlier detection even when test and training distributions differ, with the-
oretical guarantees for both marginal and calibration-conditional approaches.

e Real-World Validation: We experiment the integrated framework on a financial dataset with
temporal distribution shifts. By combining weighted conformal inference with adaptive p-value
thresholds, we show improved outlier detection type I error, while also exposing the practical
limitations of estimating the likelihood ratio.

Our results build on the interplay between conformal prediction and distribution shift, offering
practitioners a flexible tool for reliable uncertainty quantification in nonstationary environments. The
theoretical foundations provide new insights into how distribution shift adaptation enhances outlier
detection, while our empirical findings highlight critical trade-offs between type I and type II errors in
practical applications.



Contents

1 Foundations of Conformal Prediction
1.1 Data Exchangeability and Conformity Scores . . . . . .. .. ... .. ... ... ....
1.2 Full Conformal Prediction . . . . . . . .. .. . .
1.3 Split Conformal Prediction . . . . . . . . .. .. ... .. .
1.4 Coverage Guarantees . . . . . . . . . . .. L e e e
1.5  Conformity Scores in Practice . . . . . . . . . ...
1.5.1 Absolute Residuals . . . . . . . . . ..
1.5.2 Rescaled Residuals . . . . . . . . . ...
1.5.3 Conformalized Quantile Regression (CQR) . . . .. ... ... ... ... ....

1.5.4 Comparison of Scores under Heteroskedastic and Homoskedastic designs . . . . .

2 Conformal Prediction Under Distribution Shift
2.1 Covariate Shift and Exchangeability Breakdown . . . . . . . ... ... ... .. ... ..
2.2 Weighted Conformal Prediction . . . . . . . . . . ... ...
2.3 Theoretical Guarantees . . . . . . . . . . . ..
2.4 Miscoverage Error when estimating w . . . . . . . .. ... .. ... . ...
2.5 Estimating the Likelihood Ratio . . . . . .. ... ... ... ... .. .. ... ...
2.6 Effective Sample Size (ESS) . . . . . . . . ..

3 Conformal p-Values for Outlier Detection
3.1 Marginal Conformal p-values . . . . . . . . . .. .. .. .
3.2 Correction: Constructing Calibration-Conditional Valid p-values . . . ... ... .. ..
3.3 Simes and DKWM Methods . . . . . . . . . .. ..
3.3.1 DKWM Adjustment . . . . . . . ...
3.3.2 Simes Adjustment . . . ... ...
3.4 Multiple Testing with Benjamini-Hochberg . . . . . . . .. .. ... ... ...

4 Outlier Detection under Distribution Shift
4.1 Weighted Conformal p-values for Outlier Detection . . . . . . .. .. .. .. ... ....
4.2 Numerical Experiments . . . . . . . . . . L
4.2.1 The 10-K Dataset . . . . . . . . . . e
4.2.2 Comparison of CP Intervals . . . . . . .. .. ... .
4.2.3 Outlier Testing . . . . . . . . .

© =7 =7 =1 7 Ot Ut W

el el e e s
O IO WiNNDN



1 Foundations of Conformal Prediction

Given some data (Z;)1<i<n = (Xi, Yi)i1<i<n, the goal of CP is to provide a function C' that maps the
new covariate X,41 into an interval with coverage at least 1 — . In other words, we want

P(Yn+1 S C(Xn+1)) Z 11—«

This objective is called finite-sample coverage as it provides non-asymptotic guarantees.

1.1 Data Exchangeability and Conformity Scores

At the core of conformal prediction lies the principle of exchangeability of the data: a condition that
ensures the joint distribution of data remains invariant under permutations. Exchangeability underpins
the validity of conformal prediction, enabling finite-sample coverage guarantees without assumptions
on the underlying data distribution.

Definition 1. Exchangeability
A sequence of random variables Z1, ..., Z, is exchangeable if their joint distribution P satisfies

P(Zy,....2Zn) = P(Zs1ys- -+ Zo(n))
for any permutation o.

Exchangeability serves as a weaker generalization of the traditional independent identically dis-
tributed (i.i.d.) assumption. Indeed, while i.i.d. random variables are obviously exchangeable, the
exchangeability allows for more freedom while maintaining the fact that no specific point has more
”importance” than others. Exchangeability explicitly allows for dependencies within sequences, mak-
ing it broadly applicable to real-world data where strict independence rarely holds.

When measuring how well new observations ”conform” to historical data through a score, exchange-
ability ensures that each score is equally likely to occupy any rank within the set of scores. We call such
a score a conformity score (conformity scores can also referred as "nonconformity scores”). These
scores aim at quantifying the ”atypicality” of observations relative to a reference dataset, where higher
values indicate greater deviation from expected patterns.

The most direct way to create a conformity score is to consider the residuals of a trained model
fi. For example, given fi,, an estimator of E(Y|X) trained on the dataset Digin = (Z;)i=1,...n, We can
define a score function for each data point Z = (X,Y) by S : X, Dirgin — |Y — 4(X)|, measuring how
well (X,Y) could follow the same distribution than Dyyqip,.

The exchangeability of the data then implies the exchangeability of the scores which will be used
to provide quantiles for the new point score S(Z,+1, Dirain)-

Remark 1.1. Another type of exchangeability, now regarding the algorithm A that maps data points
to the estimator fi, is also required in CP. In fact, the algorithm has to treat the data symmetrically to
ensure the observation of the fitted estimator(s) benefit from the exchangeability of the training data.
For simplicity, and because we aim to focus on the relaxation of the data exchangeability assumption, we
will restrict our study to symmetric algorithms. However, algorithms may benefit from non-symmetry,
for example by giving higher weights to the recent data in time-dependent settings.



1.2 Full Conformal Prediction

Full conformal prediction represents the original and most rigorous formulation of conformal prediction,
providing a prediction interval for Y;, ;1 given the training data Zi., and the new covariate X,41. Its
core idea is to consider all possible values y for Y, and test which ones would make the augmented
sample (Z1, ..., Zn, (Xn11,y)) appear exchangeable.

For a test input X,,1, the method computes scores Vy, ; = S(Z;, Z1.nU(Xpy1,y)) foralli =1,...,n,
Vynt1 = S((Xn+1,9), Z1:n U (Xn41,y)) and includes y € R in the prediction interval if:

Vym+1 < Quantile (1 — a; {Vy1,...,Vynt U{oc0}),
where the a-level quantile is adjusted to account for finite-sample calibration.

This condition comes from the fact that, if y = Y41, all the data Zy.,41 is exchangeable and the
position of Vj ,,+1 among all score values (Vy,i)?ill will be uniformly distributed in [n + 1] the set of
integers between 1 and n+1. It would then be in position inferior than [(1—a)(n+1)] with probability
at least 1 — a.

With the finite-sample adjustment, the condition is equivalent to

[(1-a)(n+1)]
n—+1

Vyn+1 < Quantile < AVi,..., Vo U {oo}) ,

which leads to the following algorithm formulation.

Algorithm 1 Full Conformal Prediction (from [Lei et al., 2018])

Input: Data (X;,Y;), i = 1,...,n, miscoverage level o € (0,1), regression algorithm .4, new point
Xpn+1 at which to construct the prediction interval, and values Viia = {y1,¥2,...} to act as trial
values

Output: Prediction interval Ceone(Xy41)

for y € Visja do

‘/y,i = S(Zu Zl:n U (Xn—i—l?Z))v 1= 17 -y N, and Vy,n-i—l = S((Xn—f—l,y); Zl:n U (Xn—l—lay)) (*)
m(y) = (1433 H{Vyi < Vyns1)}/ (n+1)
end for

Return Ceont(Xn+1) ={¥ € Vi : (n+ D7(y) < [(1 —a)(n+1)]}

Remark 1.2. Using the traditional residual score in Algorithm 1, line (*) becomes

ﬂy - A({(X17Y1)7 ey (Xn’Yn)a (Xn-i-la y)})
Vi = Yi — fiy(Xa),i=1,...,n, and Vyny1 = |y — fiy(Xn1)|

which emphasizes more explicitly that |Via1| different models have to be fitted, one for each y value
we are considering.



1.3 Split Conformal Prediction

To mitigate computational costs, split conformal prediction partitions the data into a training set
Dirain and a calibration set D,y (usually fixing Dirgin = Deat = %) A model i is fitted on Dyygin,
and conformity scores V; = S(Z, Dirain) are computed for each Z € Dy. For a new input X, 11, the
prediction interval becomes:

C(Xn—i-l) = [/l(Xn—H) - dl—a:ﬂ(Xn—H) + dl—a] ;

where §1_o is the (1 — a@)(1 + 1/neq)-th quantile of the calibration scores. This approach reduces
computation from O(n) trainings (required in ”full” conformal methods) to a single model fit, enabling
scalability to large datasets. However, it introduces a trade-off: while efficient, the split may reduce
statistical power compared to full conformal approaches that utilize all data for both training and
calibration.

Algorithm 2 Split Conformal Prediction (from [Lei et al., 2018])

Input: Data (X;,Y;), i =1,...,n, miscoverage level o € (0, 1), regression algorithm .4
Output: Prediction band, over z € R?

Randomly split {1,...,n} into two equal-sized subsets Z;, Zo

Vi =8(Zi;(Zj)jen,), t € Ip

d = the kth smallest value in {V; : i € Zo}, where k = [(n/2+1)(1 — a)]

Return Cypie(z) = [(x) — d, fi(z) + d], for all z € R?

We can see here that Split CP is just a special case of Full CP where the regression algorithm A

is constant and returns a model ji, trained on Zi.,. Therefore, the coverage proof of Split CP will
n

immediately follow from the Full CP proof applied for 7.

1.4 Coverage Guarantees

The hallmark of conformal prediction is its finite-sample marginal coverage guarantee:
P (Vi1 € C(Xut1)) 2 1 -«

which holds without distributional assumptions beyond exchangeability.

Theorem 1. Full CP provides finite-sample marginal coverage (from [Lei et al., 2018])
If Zy, ..., Zy, Zps+1 are exchangeable, then the conformal interval C(X,11) computed in Algorithm
1 satisfies
]P)(YnJrl € C(Xn+1)) >1l1—«

In addition, if there is almost surely no ties between the score values Vy, ,1,...,Vy, 1 nt1, then
C(Xn+1) also satisfies

1
P(Yn+1 € C(X <l—-a+——
( n+1 ( n+1))— +n+1
The proof hinges on the rank uniformity of the test score Vy,  , ,41 among the augmented set
W15 s VWi mt1}- By construction, Vy, ., ,41 has equal probability to occupy any position in

the sorted scores, ensuring the a-threshold excludes the worst a-proportion of cases.

Remark 1.3. For continuous distributions, the condition for the upper-bound is always valid, but
discrete settings may require randomized tie-breaking to achieve tight bounds. Both guarantees remain
valid even when the score function S is poorly calibrated, though interval width depends critically on
the choice of S.



Remark 1.4. The marginal coverage P (Y, 41 € C(Xp+1)) > 1 — a should not be confused with the
conditional coverage P (Y, +1 € C(2)|Xp+1 =) > 1 — « for all z. In fact, while the latter implies the
former, the marginal coverage is only valid on average with respect to X, 41’s distribution and not for
every value X, 1 can take.

Proof. of Theorem 1
By definition of Algorithm 1, we have the event equality

{Yn+1 € C(Xn-i-l)} = {VYn+1,TL+1 < Quantile (1 — Qg VYn_H,l:n U {OO})}
We now use Vv € R, E C R, 8 < 1, the following equivalence:
v < ¢ := Quantile (8; EU {o0}) <= v < ¢ := Quantile (8; E Uv)

While the indirect implication is obvious, the direct implications follows from the fact that replacing
+00 by v might shift g towards the left but we would still have ¢ C [v,q] as v < ¢ implies that

1B Leer L(e <v) < B.

Having now, {Y,11 € C(Xny1)} = {Wipine1 < Quantile (1 — a; VYnH,l:nH)}a Y,+1 belongs to
the interval if the rank of Vy, , ,41 among all Vy, ., 1,41 is lower than [(1 — a)(n + 1)] which, by

. R . [(1—a)(n+1)]}
exchangeability, happens with probability at least =25 > 1 — a.

If there is alsmost surely no ties, the probability is exactly equal to %ﬂ <l—-a+ n—_lH O

Remark 1.5. [Tibshirani et al., 2019] present an alternative proof of Theorem 1 by considering the
event E, that {Vy, ., 1,..., Vv, ., n+1} = {v1,Vns1}. Assuming there are almost surely no ties, it can
be shown quite easily that, under E,, V;,11 follows a uniform distribution on the set {v1, vy,11}, which
can be rewritten as

1 n+1
Vn+1|Ev ~ m z; 51}1
1=

Having, under E,, {Vi,...,Vioy1} = {v1,vn+1}, we then have

1 n+1
Vi1l By ~ —— oy,
n+1| v n+1;%

Using this, and the definition of quantiles, they show the coverage when conditioning on F, and by
marginalizing, obtain the general result.

We notice here that n%_l weights are ”applied” to each score V;. All these weights are equal because
we are here under the exchangeability assumption but we will see in the following section that, in non-
exchangeable settings, choosing specific weights for every score can bring back the coverage guarantees
of the exchangeability settings.

Remark 1.6. In the rest of this essay, we will no longer use Full CP due to its higher computational
price. Using Split CP, the scores empirical distribution becomes n%rl Yo by, + #1500 where d4
accounts for the, non computed, test score. As shown in the proof of Theorem 1, this empirical

distribution yields to the same prediction intervals, even in the context of Full CP.



1.5 Conformity Scores in Practice

Even thought the CP marginal coverage holds for any score function (that relies on a regression model
trained symmetrically with respect to the training points), nothing guarantees us that the intervals’
lengths will be short enough for the results to be exploitable.

Consequently, the choice of conformity score critically influences, through the length of the intervals,
the adaptivity and efficiency of conformal prediction intervals. Below, we detail three widely used
scores -absolute residuals, rescaled residuals and conformalized quantile regression (CQR)-
explaining their computation, theoretical properties, and practical trade-offs.

1.5.1 Absolute Residuals

The residual score is the simplest conformity measure, defined as the absolute difference between
observed and predicted values:
S((X7Y)7Dtmin) = ’Y - ﬂ(X)‘v

where [i is a point predictor (e.g., linear regression, neural network) trained on Dipain. This score
evaluates raw prediction error, producing intervals of constant width: [i(X,4+1) £ Gi1—o. For imple-
mentation, [ is fit once on Dy, and residuals are computed on D, While model-agnostic and
computationally efficient, constant-width intervals perform poorly under heteroskedasticity, as they
over-cover in low-variance regions and under-cover in high-variance regions. However, residual scores
excel in homoskedastic settings (e.g., simulated data with additive Gaussian noise), usually having very
competitive interval lengths while being computationally efficient.

1.5.2 Rescaled Residuals

The rescaled residuals score, designed by [Lei et al., 2018], addresses heteroskedasticity by normalizing
residuals with an estimate of their conditional mean absolute deviation (MAD). The score is defined
as:

[Y — pX)|

6(X)
where 6(X) aims at estimating the conditional MAD E[|Y — 4(X)| |X]. In order to compute both
f and & models, one can first train i on Dyain to estimate E[Y|X] and then train 6 on Diain (or a
separate split) to predict |Y — fi(X)|, making this method slightly more computationally expensive than
the absolute residuals.

The main interest of the rescaled residuals score is that the prediction interval length adapts to
local uncertainty: C(X,+1) = 4(Xnt+1) £ ¢1—a - 6(Xp+1). While rescaled residuals perform well in
heteroskedastic regimes, they require an accurate scale estimation 6(X) to avoid biases interval widths
and are very sensitive to ¢’s miscalibration.

S((X7 Y), Dtrain) —

1.5.3 Conformalized Quantile Regression (CQR)

CQR integrates quantile regression with conformal prediction to construct adaptive intervals without
explicit variance modeling. The score is:

S((X7 Y)vpt’ra’in) = Imax {qAa/2(X) - Y7 Y — Q1fa/2(X)} ’

where ¢, (X) estimates the 7-th conditional quantile of Y| X.
The CQR score, designed by [Romano et al., 2019], quantifies how far Y deviates from the central
prediction interval [Gq /2(X), §1—a/2(X)], where the bulk of the conditional distribution Y'|.X is expected
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Figure 1: An example of CQR score when Y|X ~ N(0,1)

to lie. The score is negative if Y falls inside this interval, with magnitude proportional to its distance
from the nearest quantile boundary, and negative otherwise.

In order to compute the two quantile models (or a single model with two outputs), [Koenker & Bassett, 1978]
showed that we can use the pinball loss:

_ JBly—90) if y >0,
lﬁw’”‘{(l—/ﬂ)(@—y) if y < 0.

which satisfies the property Quantile(8,yi1.,) = argmingeg > v, 136, y;)-

Having ¢ = Quantile(1—c, S((Xi,Y:), Dtrain)1:n., ), the CQR score outputs C'(X,41) = [da/Q (Xn+1)—
G1-a> G1—a/2(Xnt1)+q1-a] eventually having C'(X;,41) narrower than [G,/2(Xn41), §i—a/2(Xnt1)] if most
scores are negatives.

By adapting to local uncertainty through the presence of q,, /Q(Xn+1) and §¢;_, /Q(Xnﬂ) in the pre-
diction interval, CQR performs very well in heteroskedastic settings (e.g., medical data with outcome
variance depending on patient age) but demands accurate quantile estimation. However, the compu-
tational cost is usually higher than both residual-based methods due to the training of the quantiles
models. While CQR scores are, as rescaled residuals were with the MAD, sensitive to the quantiles es-
timation, it is more robust than rescaled residuals and still manages to achieve the coverage guarantees
with insufficient training data.



1.5.4 Comparison of Scores under Heteroskedastic and Homoskedastic designs

We generate datasets with n = 1000 and n = 100 data points (with [Digin| = |Deat| = %) in one
homoskedastic setting (having Y ~ sin(27X) + N(0,0.5)) and one heteroskedastic setting (having
Y ~ sin(27X) + N(0,0.05 + 0.45X?2)). All the setups are tested on 200 points.

Homoskedastic Design

As shown in figure 2a, the absolute residuals seems to be the best method when having a limited
number of training data, achieving the desired coverage with the shorter average width. This must be
the consequence of lacking accuracy on the scale model (for rescaled residuals) and the quantiles models
(for CQR). However, when augmenting the number of data points figure 2b both absolute residuals
scores and CQR methods are very promising, with CQR having a slightly narrower interval.

Heteroskedastic Design

In the context of heteroskedasticity, figure 3 clearly demonstrate the importance of having a locally
adapted interval length, thus not making intervals artificially wide in areas with lower noise. While
both rescaled residuals and CQR methods provide good average widths, CQR performs better in both
low data volume and high data volume setups: achieving, unlike rescaled residuals, 90% coverage with
low data volume and providing narrower intervals in the high data volume setup.

Overall, these results highlight CQR’s robust performance across data conditions, with rescaled
residuals showing particular weakness in homoskedastic settings. The absolute residuals method, while
simple, proves competitive in homoskedastic scenarios with sufficient data and outperforms CQR when
having insufficient data.
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Figure 2: Comparison of Score Functions in a Heteroskedastic design
Y ~ sin(27X) + N(0,0.05 + 0.45X?)
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Homoskedastic Data (constant noise)
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Figure 3: Comparison of Score Functions in a Homoskedastic design
Y ~sin(27X) + N(0,0.5)
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2 Conformal Prediction Under Distribution Shift

2.1 Covariate Shift and Exchangeability Breakdown

Conformal prediction hinges on the exchangeability of training and test data, a condition violated
under distribution shift. In many real-world applications, the test covariate distribution P)t(e“ differs
from the training distribution P)tfam while the conditional distribution Py|x remains unchanged. This
phenomenon, termed covariate shift, arises in settings such as medical diagnostics (where patient de-
mographics evolve) or financial time series (subject to temporal drift). Standard conformal prediction
intervals, which assume exchangeability, lose validity under such shifts, as their coverage guarantees
degrade when test points are drawn from a distribution misaligned with the calibration data.

Formally, we have ' .
{(Xi,Y) Yoy ~ P = PY*™ . Py

and
(Xnt1, Yg1) ~ P*0 = P Py

with independence between all the points.

The goal remains the construction a prediction band C(X,,4+1) satisfying:
P(Yn—i-l € C(Xn-i-l)) >1—aqa,

despite Pigst £ pirain,

2.2 Weighted Conformal Prediction

To address covariate shift, [Tibshirani et al., 2019] introduced likelihood ratio weighting to recalibrate
the calibration scores. Weighted CP addresses the non-uniform rank distribution of the test score V,,11
under distribution shift by reweighting it with the likelihood ratio between both distributions (as Py x
remains unchanged, we only need to mimic the distribution P¥31(X,,41)).

dPtest(x)
Let ’UJ(QU) = W

tributions. Then, the weighted conformal procedure adjusts the calibration step to account for w.

denote the Radon-Nikodym derivative of the test and training covariate dis-

Therefore, the prediction interval becomes:
C(Xnt1) = [1(Xn41) — @, (Xng1) + 4170

where ¢}”_, is the (1 — a)-quantile of the weighted empirical distribution of residuals

n
D v + i1 00 (2.1)
=1

with some weights p;’, proportional to w, that we will define formally in the next subsection.
This adjustment ensures that the quantile estimation prioritizes regions where P{** dominates.

Remark 2.1. The assumption that P is absolutely continuous with respect to P is necessary
in order to use w. This usually doesn’t pose any problem as most of the supports in real-world data
would be equal between the training distribution and the testing one. In the following of this essay,
all the training and testing supports will be equal (wether it is in continuous or discrete setups). To
simplify, we assume in the following that this assumption is always verified.
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Remark 2.2. One could consider the test distribution as the reference one and therefore weight all the
dPtram(x)

W)

However, as we will see in the next subsection, this would lead to much more complicated weights p5’

due to the fact that n points would have to be corrected instead of one.

calibration points to bring back exchangeability (with the inverse Radon-Nikodym derivative

2.3 Theoretical Guarantees

The validity of weighted conformal prediction rests on a generalized notion of weighted exchange-
ability.

Definition 2. Weighted Exchangeability
A sequence of random variables Z1, . .., Zy, is weighted exchangeable (with associated weight functions
w1, ..., wy) if the density of their joint distribution satisfies

f(z1,. . 2m) = sz(zz) ~g(z1,. -y 2n)
i=1

with g being any permutation invariant function (i.e. g(z1,...,2n) = g(25(1)s - - -+ Zo(n)) for any permu-
tation o).

If the training and test distribution have densities 2™ and f**' is easy to show that independent
data points with a covariate shift for the test point X, ;1 are weighted exchangeable. Indeed,

n

FOmt o zng1) = [N (2na1) (H ftrai“(zi)> by independence

=1

n+1
= w(Znt1) (H ftrain(zl-)> by definition of w

i=1

Explicitly, we get Vi < n,w; = 1 and w _w_w
P Y g = I, Wy = n+l — - dP)t{rain(m) .
Remark 2.3. In order to show to weighted exchangeability of X1,..., X;,11, we can no longer assume

the training data to be only exchangeable (with the test point independent from all training points)
and have to consider independent points.

We can now define the weights p}’ used in (2.1) to compute the weighted quantile g;_. In the
general weighted exchangeability setting, these weights are defined as

Y o= L21 wi(Zo()
>, T2 wj(20(7))

When the test point is the only shifted one, with the exchangeability weights derived above, we get
fori=1,...,n4+1,

P (21, oy Zng1) = foralli=1,...,n+1

nlw(z;) B n‘w(zi) o w(z)
Z;Lill Za:a(n+l):j H;Lill wj(ZU(j)) j 1 ’I?,"LU(Z]) Z?+11 ’LU(ZJ)

P =

13



In other words, if computing the prediction interval for z € R,

Py = —=m , fori=1...,n4+1
Z_j:l w(X;) + w(z)

and
w()

Pret = S50 X) + wla)

If the likelihood ratio w is known or accurately estimated, the procedure achieves marginal coverage.
We show the following theorem, leveraging the fact that the weighted scores mimic exchangeability
under P)t(rain7 in the context of Full CP (having Split CP as a special case as noted in subsection
1.3) where the prediction interval is now

C(Xnt1) ={y € R: V, n41 < Quantile(1 — o sz-”évi + Pri1000)}

i=1

Remark 2.4. The quantile above refers to the 1 —a quantile of the distribution )" | pi’dv; + piy, ; 0cc-
Using the same notation for uniformly weighted quantiles, we would write

1 & 1
Quantile(l —a; Vvlzn U oo) = Quantile(l — O m ZZ; 5{/1 + méoo)

Theorem 2. Weighted Conformal Coverage for Full CP (from [Tibshirani et al., 2019])

test
Under covariate shift, if w(x) = &(x) is known, the weighted conformal prediction interval

(i});?ain
C(Xn41) satisfies
P(Yn+1 S C(Xn_l,_l)) 2 1—a.

In addition, if there is almost surely no ties between the score values Vy, ,1,...,Vy, 1nt1, then
C(Xp+1) also satisfies

P(Yn+1 S C(Xn+1)) <l—-a+

n+1

Proof. We assume, for simplicity, that there is almost surely no ties between all score values. We
consider, as in remark 1.5, the event E, that {Z1,...,Z,+1} = {z1,...,2n+1} and denote v; =
S(ziy2—i)-

Then, forallt=1,...,n+1

Zaza(n+1):i ijint(zo—(l)a ceey ZO’(TZ-I—I))

P(Vn-i-l = U,"Ev) = P(Zn—f—l = Zi‘Efu) = Z fjoint(z (1)s -+ Zo( +1))

APt ()

dp)t(rain (ZE) glVeS

which, by weighted exchangeability with weights w; = 1 for i < n and w,41 = w =

Yoio(nt1)=i W(Zo(n41)9(Z0(1): - s Za(nr1))
>0 W(Zo(n41))9(Za(1)s - - - s Zo(n+1))
_ Zoza(n—i-l):i w(zi)
B Zo w<za(n+1))
nlw(z;)

= 1—
Z;Lil nlw(z;)

P(Vpt1 = v|Ey) =

by permutation invariance of g

14



meaning that
n+1

Vn+1|Ev ~ Zp?(zh ceey Zn—i—l)(svi
=1

Because we are under E, and the same permutation maps Z; and V; to z; and v;, we can rewrite

n+1
Vi1 Bo ~ Y pi(Z0, . Znga)dy,

i=1
Ev> >1—a

n+1
P <Vy7n+1 < Quantile(1 — oy Zp;"évl)> >1l-«a
i=1

which leads to

n+1
P (Vy,n—i—l < Quantile(l — szu(svl)
=1

and marginalizing,

We conclude by using the equivalence (which also applies with weighted quantiles) in the proof of
Theorem 1 to get

n
P <Vy7n+1 < Quantile(1 — o pr’évi +p;”+15oo)> >1l—«a
i=1
As in the proof of Theorem 1, having almost surely no ties, this probability is exactly equal to
((1_04)(”1‘5‘1)-‘} <l—a+ % O
n+ — n+1-

Even though weighted CP achieves marginal coverage, Theorem 2 only proves so when the density
ratio w is known, making it hardly applicable on real-life datasets.
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2.4 Miscoverage Error when estimating w

We now propose a new lower bound showing how the density ratio estimation error impacts the weighted
CP coverage.

Theorem 3. Worst Case Miscoverage for Likelihood Ratio Estimation

Let i denote a density ratio estimator satisfying sup,eg |(z) — w(z)| < e, let D = 3" w(X;)
and D' = Y a(X;).

Under the condition that D, D' > ¢ > 0, the CP interval C’(Xn+1) built with w achieves the following
marginal coverage

P(Ypi1 € C(Xps1)) >1—a— (n N (n+1)3 <, w(Xi)>

C C

Proof. Assuming that sup,cp |W(z) —w(z)| <eand D,D' >c¢>0,weget foralli=1,...,n+1

w o (W) @(X)
Ipi" — il = ’ D D

_|wXy)  wXy)| | |w(X)  @(X) :

= ‘ D D + o] o] by triangle inequality
w(X)D-D| | =

- DD’ D’
e [((n+ Dw(X;) p

< — <

_D’< o) +1 as |[D—D'| < (n+1)

gg((”ﬂ)w(X) +1> as D,D' > ¢
c c

Now considering F,,;+1 the cumulative distribution function of the weighted empirical distribution
Yo POy, + Pl 1000, and Fyqq its variant with o, we have for ¢ € R

Fry1(q) — Fusa(g |<le2—pz ]1V<q§Z|pz_pz

L (<n+1>zi§nw<xi> M) R

C C

Consequently, noting §;—, the 1 — a quantile of the estimated weighted empirical distribution, we get

FnJrl((jlfa) 2 FnJrl (‘jlfa) - A
=l—-a—-A=:0

thus showing that ¢1_o > gg.
Finally,
P(Vynt1 < Gi-a) 2P (Vyns1 < qp) =2 B

O

Lets now try to approximate this bounds in usual settings: when n is high and the distribution shift
is moderate. Having these assumptions, the Law of Large Numbers states that a c-value slightly lower
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than n - min (EP)t(rain [w(X)]; E ptrain [@(X)]) ~ n - Epiain [w(X)] satisfies with high probability D, D" > ¢

(we remove the test point drawn from P¥%" using D ~ >0 | w(X;)).

Therefore, under such settings, the miscoverage bound A can be approximated using

ne <(n +1) > i< w(Xi) N 1) 2

C - ]:Epjt(rain [w(X)]

C

Having for example 1 < sup,cp [w(z)], a shift under which the likelihood is at most divided by a,
we get
A < 2ae

In practice, D — D’ is more likely to behave like a random walk of magnitude ¢ (with errors with
different signs canceling each other). Therefore, it would remain to show that under certain regularity
conditions we can get, with high probability, a new bound

A E (V”+1Zignw(Xi) —|—n>

Cc

The approximations above would then lead to
€ 1
AN ——————(1+ —)
Epg(rain [w(X)] \/’ﬁ

Remark 2.5. While having §1_, < ¢qi—o violates the coverage guarantees, cases when ¢1_o > qi—q
would lead to artificially wide intervals, eventually making the prediction intervals useless.

2.5 Estimating the Likelihood Ratio

In practice, w(z) is often unknown and must be estimated. Let Db = {X, 11...., X, 10n} denote

unlabeled test covariates.

Common approaches either indirectly estimate w through probabilistic classification or directly
estimate it using non-parametric density estimation:

e Logistic Regression: First train a classifier to distinguish Diap, from DR and then use the

odds ratio % to estimate w(x).

e Density Ratio Estimation: Directly model w(x) via kernel methods or random forests.

As the accuracy of w(x) critically impacts performance (through coverage guarantees violation or
interval widths inflation), large sets Diab are essential to mitigate estimation errors, especially in
high-dimensional settings where the estimation can easily be biased or unstable.

Therefore, using CP under covariate shift requires multiple datasets: Diyain and D, drawn from
Prain (to fit the regression model(s) and compute the scores), DEaP drawn from P2 to estimate w

and eventually Diest drawn from Ptrain ¢4 check the coverage guarantee.
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2.6 Effective Sample Size (ESS)

Prediction under covariate shift introduces the concept of effective sample size (ESS) (designed
by [Gretton et al., 2009]), which quantifies the information loss caused by non-uniform likelihood ratio
weights.

For identical training and calibration sizes weighted conformal prediction intervals exhibit greater
variability in coverage rates compared to unweighted methods, mirroring the performance of unweighted
conformal prediction when the training and calibration size is n = ESS.

The ESS heuristic is defined as:

2
pss — (i w0 w(Xen) 3
e :
Yimw(Xi)? w(Xua)l3
This formula measures how ”concentrated” the weights are: while any constant w (including w = 1

when there is no distribution shift) gives ESS = n, highly non-uniform weights can lead to ESS <« n,
indicating significant efficiency loss.

Overall, the ESS framework underscores the critical balance between covariate shift correction and
statistical efficiency, particularly in high-dimensional problems.
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3 Conformal p-Values for Outlier Detection

This section focuses on the application of conformal prediction techniques to the task of outlier detec-
tion, where the goal is to identify which among new observations do not belong to the same distribution
as a reference dataset. Building on the foundations established in section 1, we present conformal p-
values as a principled approach to nonparametric outlier detection that provides finite-sample statistical
guarantees.

3.1 Marginal Conformal p-values

In the context of outlier detection, we consider a dataset D containing independent and identically
distributed points drawn from an unknown distribution in R¢: Py. Following the split conformal ap-
proach, we divide D into a training set Dy qin (With negative indexes for simplicity) and a calibration
set Deqt = {Xpyi}i of size n. The goal is to test whether each new test point in Dyest = { X1 ?jft

comes from the same distribution Px (i.e., is an inlier) or from a different distribution (i.e., is an outlier).

Remark 3.1. In all this section we are only interested in the covariates, meaning that all the data
from D and Dyt can be unlabeled data. Consequently, the conformity scores are now only assessing
the conformity of x with respect to the distribution Px.

To perform this test, we first train a scoring function § : R% — R on Dyyain that assigns lower scores
to potential outliers. The classical marginal conformal p-value for a test point z is then defined as:

] 1§ : < 3§
ﬂ(marg)(aj) _ 1+ ’{Z € Deal S(X) > S(l‘)}’ c |: 1 71:|
n+1 n+1

This p-value represents the proportion, among the calibration points and the test point z, of points
with scores less than or equal to the score of z. Intuitively, if x is an outlier, §(z) should be small,
resulting in a small p-value.

The key property of these marginal conformal p-values is that they are marginally valid.

Theorem 4. Marginal Conformal p-values are Marginally Valid (from [Bates et al., 2021])
If X1 follows the same distribution Px as the reference data, the marginal p-value constructed
above is marginally valid in the sense that

P(am9) (X, 1) < t) <t
for any t € (0,1).

Proof. We assume that X,,+1 ~ Px and that, for simplicity, there is almost surely no ties in the
scores (§(XZ))?:+11 By ii.d. assumption, we have when fixing S by conditioning on Dian that

4™8) (X, 1) | Diain follows a uniform distribution on {n%rl, %H, ..., 1} meaning that

P(a(marg) (XnJrl) S t|Dtrain) — P(,&(marg) (Xn+1) § I_t(n + 1)J |Dtrain)

Lt o)

Finally, after marginalizing
P(a™ma8) (X, 1) <t) <t
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Remark 3.2. We get the same results without the assumption that there is almost surely no ties,
simply replacing the equal sign in (3.1) by a <.

This guarantee holds marginally over both the randomness in D,y and X,41. However, marginal
validity may be insufficient in practice since it only ensures correct calibration on average over many
random draws of the calibration data. For a practitioner working with a specific calibration dataset,
stronger guarantees may be desirable.

3.2 Correction: Constructing Calibration-Conditional Valid p-values

To address the limitations of marginal p-values [Bates et al., 2021] introduce the concept of calibration-
conditional valid (CCV) p-values, which satisfy a stronger property:

P (}P’[ﬁ(““) (Xps1) < #D] <t for all £ € (0, 1)) >1-6

This means that with probability at least 1 — 0 over the randomness in the calibration data D, the
conditional probability of an inlier p-value being below any threshold ¢ is at most ¢. This provides a
much stronger guarantee for any single application.

The general strategy to construct CCV p-values is to apply an adjustment function h to the marginal
p-values:

a(ccv) —ho ﬂ(marg)

where the adjustment function h is designed based on uniform bounds for the order statistics of
uniform random variables.

Specifically, if Uy, ..., U, " Unif([0,1]) with order statistics Uy < Ugg) < ... < Uy, and if one
can find values 0 < b; < by <...<¥, <1 such that:

P(U(l)fbl,,U(n)Sbn)Zl—d (*)

1

757> 1] can be used

Then the piece-wise constant function h(t) = bf(,41), (where b,11 = 1) for t € |
to construct valid CCV p-values.

Theorem 5. Calibration Conditional Valid p-values (from [Bates et al., 2021])
Having values 0 < by < bg < ... < b, <1 satisfying (), the constructed p-values alecr) = p o gmarg)
are calibration conditional valid:

P (P[a@“’) (Xps1) < t|D] <t for all t € (0, 1)) >1-6

Proof. We assume, for simplicity, that the distribution of the scores §(X;) is continuous. Let F' (t) =
P[$(X;) < t|Dgrain] be the conditional CDF of the scores and define U; := F(8(X;)) fori=1,...,n.

By construction, the U;s follow a uniform law on [1,n]. Additionally, when conditioning on Dyyaiy,
the score function § can be treated as fixed, and the independence of the calibration points consequently
ensures the independence of the U;s.

Denoting e, := (= {U(;) < bi}, we have by (%) that P(e,) > 1 —4.
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We now consider that ¢,, holds and want to show that

P[a(“)(X,41) < t|D] <t for all t € (0,1) (3.2)

Because (c<V)

can only take values among the b;s, we have
P[a'“) (Xp41) < #[D] = Plal“) (X, 11) < b;|D]
where b; is the highest b; smaller than ¢.

If b; <1 (i.e. j < n), we have the equivalence

J
n—+1

) (X 1) < b = 0™ (X, ) < = §(Xn41) < 55
where s(;) is the 4% largest score.
We get
P[a(“) (Xp41) < t|D] = Pls(Xns1) < 5()D] = Fls() = Uy
with the last equality being given by the monotonicity of F'. Finally, (3.2) is satisfied as we are under
en and b; < t.
If bj =1 (i.e. j =n+ 1), then (3.2) is immediately satisfied. O

3.3 Simes and DKWM Methods

Two primary methods for constructing the adjustment function h are the Simes adjustment and the
Dvoretzky-Kiefer-Wolfowitz-Massart-Reeve (DKWM) adjustment.

3.3.1 DKWM Adjustment

The DKWM adjustment is based on the Dvoretzky-Kiefer-Wolfowitz-Massart-Reeve inequality for the
uniform convergence of empirical cumulative distribution functions. This inequality establishes tight
bounds on the probability that an empirical distribution function deviates significantly from the true
underlying distribution.

Theorem 6. DKWM Inequality
Let X1, X, ..., X, be independent and identically distributed real-valued random variables with cu-
mulative distribution function F, and let F,(z) = * Y ic1 Lix, <) be the empirical distribution function.

n
Then for any € > 0:

P (sp(Au - P > <) <

For the two-sided version:

P <sup |Fp(x) — F(x)] > 5) < ¢ 2
z€R
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Derivation of DKWM Bounds
In order to construct CCV p-values, we leverage the two-sided DKWM inequality to find values
0<b <by <...<b, <1 satisfying (*).

We apply the two-sided DKWM inequality for uniform variables (on [0, 1]) to get a confidence level
1 — 6 on the complementary event:

P(sup \t—Fn(t)\§5>21—(5 where ¢ = log(2/9)

te[0,1] 2n

implying that
P <supFn(bi) >b; — a) >1-9

i<n
Noting the event equality {Ug) < t} = {Fy(t) > LY, we get that () is satisfied if b; —e > || for
alli=1,...,n.

Therefore, defining

! n n

. [log(2
b min{z—l— Og(ﬂ”,l}, i=1,....n

we get that b¢,... b satisfy (x).

3.3.2 Simes Adjustment

The Simes adjustment is based on the generalized Simes inequality from [Sarkar, 2008] and provides a
particularly tight bound for small p-values, which is desirable in multiple testing contexts. For a given
confidence level 1 — § and parameter k£ < n, the bounds are defined as:

) . 1/k
s 4 s1/k i (i—k+1) .
bpi1_i=1-0 <n-...-(n—k:+1) , i=1,...,n

In practice, setting k& = n/2 works well, making the Simes adjustment particularly effective for the
smallest p-values while potentially being uninformative for larger ones.

For instance, [Bates et al., 2021] highlight that with 6 = 0.1 and n = 1000, the Simes adjustment
would map the smallest possible marginal p-value of 1/(n + 1) to approximately 0.0046 while the
DKWM adjustment would map it to more than 0.1, making it too conservative for small p-values.

The difference in behavior makes the Simes adjustment more suitable for multiple testing in outlier
detection, where accurately identifying the smallest p-values is crucial.

3.4 Multiple Testing with Benjamini-Hochberg

When testing multiple test points for outlier detection, it is important to account for multiplicity to
control the overall error rate. The false discovery rate (FDR)-the expected proportion of false positives
among all rejections-is a particularly relevant error metric in this context.

In the following, we denote Hi, ..., H,, the null hypotheses that the corresponding test points are

inliers, Iy the true null hypotheses set (i.e. set of inliers) and my := |7170|
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Theorem 7. Benjamini-Hochberg procedure controls FDR
For p-values p1,...,pn, rejecting Hyy, ..., H(];) where

k= max{i 1PE) < %}

maintains the FDR under level moa < v if for all i € Iy, p; is independent of {p; : j # i}.

Having non-independent p-values (on the set on inliers), we cannot directly apply the usual multiple-
testing procedures that aims at controlling the FDR. However, a key result in [Bates et al., 2021] is
that the marginal conformal p-values satisfy the positive regression dependence on a subset (PRDS)
property on the set on inliers. PDRS being a special case of non-independent p-values that maintain
Benjamini-Hochberg (BH) procedure guarantees, one can therefore apply BH with the conformal p-
values.

Definition 3. Positive Regression Dependent on a Subset (PRDS) Random Vectors
A random vector X = (X1,...,Xm) is PRDS on a subset Iy C {1,...,m} if

P(X € A|X; ==x) is increasing in x
for any i € Iy and increasing set A.

This property ensures that the Benjamini-Hochberg procedure applied to marginal conformal p-
values controls the FDR at level mpaw < v, where g is the proportion of true nulls (i.e., inliers) in the
test set.

Remark 3.3. The BH procedure is particularly suited for setups where my is close to one (i.e. most
test point are inliers) but not otherwise as the control gap between mpa and « is ”lost” in the sense
that we could have rejected more hypotheses while maintaining the FDR under «.

One can solve this issue applying Storey’s correction from [Storey, 2002]: replacing k with max{i :
e < io;:zo} where 7y is an estimation of my (possibly very simple). While Storey’s correction FDR
control doesn’t hold in general for PDRS p-values, [Bates et al., 2021] showed that it still holds in the

specific context of marginal conformal p-values.

In summary, conformal p-values provide a powerful framework for nonparametric outlier detection
with strong statistical guarantees. The choice between marginal and calibration-conditional p-values
represents a trade-off between computational simplicity and strength of guarantees, with the latter
providing stronger assurances at the cost of slightly more conservative inferences.
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4 Outlier Detection under Distribution Shift

We now extend our framework to address outlier detection under distribution shift, with the framework
of section 2 where the test covariate distribution differs from the training distribution while the
conditional distribution of outcomes given covariates remains unchanged.

Remark 4.1. Because we are performing outlier detection and the scores computation (both training
and calibration parts) only require covariates X, we don’t actually need the outputs Y and that the
conditional distribution of outcomes given covariates remains unchanged. Indeed, we will consider in
the following all the data as unlabeled data.

As seen in subsection 2.3, if we know (or estimate well-enough) the ratio of test to training
APt (z)
dP)t(rain (2?) 9
weighting the empirical distribution of conformity scores.

Under this framework, our goal remains to determine whether a new observation Xiest is an outlier
with respect to the test distribution P, while calibrating our procedure using the available training

data that follows P2,

covariate likelihoods, w(z) = we can still perform valid conformal inference by appropriately

We here consider that we have access to two datasets:

e a dataset D of points drawn from P)t(rain that we split into Dyyain to train §, Dey = {X1,..., X}
to compute the scores and, if w is not known, Diyain, « to train @ (with some potential overlap
between Dirain, w and Dirain)-

e if w is not known, a dataset Diest, » Of points drawn P)t(eSt from to train w

and we want to test our methods on the new test point X, ;1.

4.1 Weighted Conformal p-values for Outlier Detection

To account for distribution shift, we adapt the standard conformal p-value approach by incorporating
the weights p}” derived in subsection 2.3.

Given a score function § and calibration data D, = { X1, ..., X, }, we define the weighted conformal
p-value for a test point x as

n
At () = p )+ > pp - 1{3(X;) < ()}
i=1
assigning greater importance to calibration points that are more likely under the test distribution.
Intuitively, if w(X;) is large, the calibration point X; is more likely under the test distribution than the
training distribution, and therefore should have more influence on the p-value calculation.
Conversely, if w(X;) is small, the calibration point is less likely under the test distribution and
should have less influence.

Unlike the standard conformal p-value, which gives equal weight to all calibration points, the

weighted approach accounts for the relative likelihood of each point under the test distribution, ensuring
that our outlier detection procedure remains valid despite the distribution shift.
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Theorem 8. Weighted Marginal p-values are Marginally Valid
If Xy 41 follows the test distribution P, the weighted marginal p-value il
is marginally valid in the sense that

w,marg) constructed above

P(awme9) (X, 1) <t) <t
for any t € (0,1).

Proof. We assume, for simplicity, that there is almost surely no ties between the test scores. The first
part of the proof of Theorem 2 gives us (simply replacing scores for Z = (X,Y) by scores for X) that
under the event Ey that {$(X1),...,8(Xnr1} ={s1,...,8n+1} with s1 < s9 <+ <541,

n+1
§(Xn+1)|Ey ~ Zpiuési (4.1)
=1

where p;” is the weight corresponding to s;

w,marg)

By definition of 4( we also have

J
{alom®) () < B} = {a0m O (Xo) <3P By | = {8(X0n) <55 | B}
1=1

where j is the higher index such that Zgzl py <t.
Finally having

J
P(a ™M) (X, 1) < HEy) = P(8(Xnp1) <55 | Ey) < pli <t
=1

by (4.1), which gives the result after marginalizing. O

Remark 4.2. In the context of Multiple Testing, one could proof that theses weighted marginal
conformal p-values still satisfy the PRDS property, thus allowing for multiple testing with BH.

We now define (%:¢°¥) := ho(m28) where h is defined as in subsection 3.2 with bounds satisfying
(%) (for example Simes or DKWM bounds).

The proof of Theorem 5 still holds, meaning that p-values 4(*:°) are calibration conditional valid:

i (PWWCV) (Xps1) < /D] < t for all t € (0, 1)) >1-06 if Xpyq ~ Plest
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4.2 Numerical Experiments

This section presents our experimental evaluation of conformal prediction methods applied to financial
risk analysis using SEC-mandated corporate disclosures. We employ both standard and weighted con-
formal techniques to address the prevalent distribution shift in financial data over time, with particular
emphasis on how regulatory changes impact prediction performance.

4.2.1 The 10-K Dataset

For our empirical evaluation, we utilize the dataset from [Kogan et al., 2009] consisting of annual pub-
licly available financial reports (Form 10-K) filed with the Securities and Exchange Commission (SEC).
This dataset contains 26,806 reports from publicly traded companies spanning the years 1996-2006.
Each report is paired with measurements of stock return volatility for both the twelve months prior to
the report (v_12) and the twelve months following the report (v4i2).

The volatility is calculated as the standard deviation of daily stock returns over a twelve-month
period, and we work, as in [Kogan et al., 2009], in the logarithmic domain as it is standard in finance.
The distribution of log-volatility across companies exhibits an approximately normal distribution, but
both the mean and variance evolve over time, reflecting changing economic conditions and regulatory
environments.
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Figure 4: Distributions of log(vy12) across years

The 10-K reports, particularly Section 7 (”management’s discussion and analysis of financial condi-
tions and results of operations”), contain forward-looking content that may signal future financial risk
making it, along with the publicly available v_12, suitable for the prediction of vqs.

For each year y = 2001,...,2006, we will consider as training data the data from the 5 previous
years y — 5,...,y — 1 and will use a proportion of the data from year y to estimate w the likelihood
ratio. In practice, one wouldn’t have to wait the end of the year to predict the future volatilizes as the
estimation w only requires the covariates, making it applicable for real-life predictions.
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Remark 4.3. As the training is made over the last five years, we could technically upgrade our
weights by taking into account every distribution shift in the training set but this would much more
computationally expensive.

For our feature representation, we adopt [Kogan et al., 2009]’s LOG1P approach with unigrams
(meaning that the LOGI1P frequency of each word in the vocabulary becomes a feature), which showed
good performance in volatility prediction while not increasing the number of covariates compared to
bigrams methods that consider pairs of consecutive words.

This representation is defined as h;(d) = log(1 + freq(x;; d)), where freq(z;; d) denotes the number
of occurrences of the x;, the jth word in the vocabulary, in document d.

Specifically, in order to reduce the dimensionality, we will only consider the p** more frequent words
among all documents. We will assign to this parameter p different values between 0 and 50 to explore
how the features dimension impacts the CP guarantees.

A notable characteristic of this dataset is the substantial increase in document length following the
passage of the Sarbanes-Oxley Act of 2002, which imposed revised standards on financial reporting.
The average document length nearly doubled from approximately 6,000 words in 2001 to over 12,000
words by 2005. This regulatory change creates a natural experiment for testing conformal prediction
methods under distribution shift.

4.2.2 Comparison of CP Intervals

We now compare three setups of features size: a baseline setup where the only feature is log(v_12),
an intermediate setup where the 10 most frequent words are added to log(v_12) and one where the 20
most frequent words are added to log(v_12).

After testing for Support Vector Regression (SVR) and LASSO-type models as experimented on
the same dataset by [Kogan et al., 2009] and [Meinshausen & Bithlmann, 2015], we kept the Ordinary
Least Square model for all the scores training because it performed as well on average and for its com-
putational efficiency. For the density model w, we use a Logistic Regression classifier as detailed in the
beginning of subsection 2.5.

In all the setups defined above we split D the dataset of the previous five years in two equal size
sets Dirain (used to train both S and w) and D, (used to compute the scores).

We also split the dataset of the test year y into two equal size sets Dy test (t0 train ) and Diegt
(used to test the validity of the intervals).

Figure 5 compares weighted and unweighted conformal prediction methods using the log past volatil-
ity as the sole feature. The results clearly showcase the advantages of weighted conformal prediction
with residuals, which maintains the target 90% coverage during the first year while the non-weighted
approach fails to accomplish. Additionally, the weighted residual method consistently sustains the 90%
coverage threshold (or gets sufficiently close to it in 2003) across subsequent years while simultaneously
producing shorter prediction intervals, representing a significant efficiency improvement in uncertainty
quantification. For the rescaled variant, the outcome presents a more nuanced picture. The weighted
rescaled method systematically increases coverage percentages but sometimes unnecessarily as observed
in 2004 and 2005, thus resulting in wider average interval lengths. Nevertheless, it still delivers superior
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Figure 5: Distributions of log(vy12) across years

performance for all other analyzed years compared to its non-weighted counterpart.
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Figure 6: Distributions of log(vy12) across years

Figure 6, which presents results after adding ten features, reveals patterns very consistent with the
single-feature scenario. The weighted residuals approach still performs well by substantially reducing
interval lengths while maintaining coverage percentages very close to the desired 90% threshold. The
rescaled method also exhibits identical behavioral patterns to those observed in Figure 5, with weighted
rescaled versions producing higher coverage at the expense of increased interval lengths. Notably, the
higher-dimensional feature space appears beneficial despite the additional computational complexity
of estimating likelihood ratios in higher dimension. This finding is particularly interesting given that
incorporating the ten additional covariates only reduces the regression Mean Squared Error by a modest
1.7%, indicating that these features have a disproportionately larger impact on conformal prediction
interval quality than on point estimation accuracy.

When expanding to twenty features, the increased dimensionality creates substantial challenges for
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Figure 7: Distributions of log(vy12) across years

weighted conformal prediction methods. The performance deteriorates dramatically, necessitating the
reporting of median interval lengths since a significant proportion of intervals (ranging from 0.6% in
2006 to a concerning 36% in 2002) reached infinite length. Even when considering only the finite in-
tervals through median length measurement, the weighted methods demonstrate poor efficiency when
achieving the target 90% coverage rate. This degradation likely stems from the difficulty in accurately
estimating likelihood ratios in high-dimensional spaces. In fact, as dimensionality increases, the esti-
mation of the ratio between the test and training distributions becomes increasingly unstable, leading
to extreme weights that compromise the reliability of the resulting prediction intervals.

We also provide an estimation of the ESS in different setups. As shown in the last column of
Table 1, it is very likely that the ESS estimation performs very poorly (due to w inaccuracy) in high
dimension as the weighted CP intervals still manage to achieve the 90% coverage with a good average
interval width when 10 features are added.

Year | Baseline | Added 1 feature | Added 2 features | Added 5 features
2001 76.13% 70.39% 49.36% 6.53%
2002 99.96% 93.80% 78.89% 8.70%
2003 94.77% 88.62% 84.01% 18.32%
2004 63.80% 62.59% 59.45% 23.72%
2005 56.01% 55.24% 54.02% 43.21%
2006 66.05% 65.87% 64.17% 58.11%

Table 1: Estimated ESS across years for the 10-K dataset

It appears that with appropriate feature dimensionality, weighted methods can significantly outper-
form traditional conformal prediction by maintaining target coverage while reducing interval lengths.
However, there exists a clear tipping point beyond which the curse of dimensionality severely impairs
weighted conformal prediction, as evidenced by the poor performance with twenty additional features.
This suggests that practitioners should carefully balance the benefits of additional features against
the increasing difficulty of accurate likelihood ratio estimation in higher dimensions. It also highlights
the importance of feature selection methods when dealing with distribution shifts in high-dimension
settings.
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4.2.3 Outlier Testing

In hypothesis testing, we usually consider two primary metrics to evaluate the performance of a test:
type I and type II errors. A type I error occurs when we incorrectly reject a true null hypothesis (a
false positive), while a type II error happens when we fail to reject a false null hypothesis (a false neg-
ative). These error types represent fundamental trade-offs in statistical decision-making. Theorem 8
guarantees marginal validity for weighted marginal conformal p-values, ensuring that p-values ¢(%-marg)
should, on average over multiple calibration sets D, control the type I error rate to remain below the
specified rejection level 5. On the other side, the weighted CCV p-values should also maintain the type
I error below § in at least a proportion 1 — § of the calibration sets D.,;. Following the methodology
from [Bates et al., 2021], we employed an Isolation Forest approach to compute the score §.

Remark 4.4. In order to generate some outliers, we randomly changed 30% of the features of some
points into outliers with respect to the corresponding feature distribution, using the 1.5 Inter-Quantile
Range (IQR) rule designed in [Tukey, 1977]: assigning the feature above g759 + 1.5 - IQR or below

Qo5 — 1.5 IQR where IQR = q759 — G25%-
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Figure 8: Distributions of log(vy12) across years

We plotted the error rates as a function of the rejection level 5 for our comparative analysis, with
Figure 8 showing type I error rates and type II error rates across different testing configurations. These
experiments compared weighted marginal and standard marginal methods under various setups with
different numbers of added features. The results demonstrate that weighted marginal methods con-
sistently achieve the target type I error control, remaining at or below the specified 8 level in most
experimental scenarios. In contrast, the non-weighted methods consistently fail to maintain proper type
I error control, exceeding the target threshold. However, this improved type I error control comes at a
substantial cost: weighted methods exhibit significantly larger type II error rates, indicating that they
fail to reject many outliers. This performance characteristic suggests that weighted marginal methods
have limited practical applicability except in contexts where highly conservative decision-making is
paramount and maintaining a low type I error rate takes absolute priority over statistical power.
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Figure 9: Distributions of log(v412) across years

Figures 9 present analogous error analyses for Conditional Conformal Validation (CCV) and Weighted
CCV methods. Similar to the pattern observed with marginal p-values, the weighted CCV approaches
successfully achieve the target type I error control while their non-weighted counterparts fail to main-
tain error rates below the specified threshold. The weighted CCV methods also show inflated type II
error rates compared to standard CCV, reflecting a reduced ability to identify true anomalies. However,
it’s notable that the difference in type II error rates between weighted and non-weighted variants is less
pronounced in the CCV framework than in the marginal one. This suggests that the weighted CCV
approaches might offer a more balanced trade-off between the two error types compared to weighted
marginal methods.

Overall, while weighted methods (both marginal and CCV) almost invariably provide better control
of type I errors, their substantially higher type II error rates make them less competitive in many prac-
tical applications where detecting true anomalies is equally important. The reduced rejection power
means these methods often fail to identify genuine outliers, limiting their utility in scenarios requiring
balanced performance. An additional observation from our experiments is that the type I error appears
to increase with feature size across all methods, suggesting that high-dimensional data presents greater
challenges for maintaining error control.

The poor type II error performance of weighted methods is very likely caused by inaccurate like-
lihood ratio estimation, particularly in higher dimensions where such estimation becomes even more
challenging. Notably, even in the weighted scenarios without added features, the likelihood estimation
remains inherently difficult — a limitation clearly visible in the type II error rates patterns across both
marginal and CCV method figures. Furthermore, increased dimensionality degrades the accuracy of
conformity scores themselves, as the curse of dimensionality impacts the precision of distance-based met-
rics and distributional assumptions. This dual effect (compromised likelihood estimation and reduced
score reliability) collectively diminishes the competitiveness of conformal methods in high-dimensional
settings, exacerbating the trade-off between type I error control and detection power.
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Conclusion

This work proposes two contributions to conformal prediction under distribution shift and presents an
empirical evaluation of both existing and newly developed methods on a real-world financial dataset
exhibiting temporal distribution shifts. First, we derived a new lower bound that quantifies how den-
sity ratio estimation errors impact weighted conformal prediction coverage. Second, we introduced
a framework for constructing valid p-values under distribution shift by incorporating likelihood ratio
weighting into the calibration process, establishing a new method for nonparametric outlier detection
under distribution shift.

Our experiments on the SEC 10-K financial dataset revealed some insights into the practical appli-
cations of these methods. Notably, weighted conformal prediction demonstrated slight advantages in
maintaining target coverage while reducing interval widths in low to moderate dimensions. However,
we observed a clear dimensionality threshold beyond which weighted methods deteriorate dramatically,
with intervals frequently reaching infinite length when using 20 features. This deterioration highlights
a fundamental limitation caused by the curse of dimensionality in likelihood ratio estimation.

In the context of outlier detection, our experiments uncovered an important trade-off: weighted
methods consistently achieve better type I error control but suffer from substantially higher type II
error rates. This asymmetric performance suggests these approaches could only be suited for applica-
tions where minimizing false alarms takes absolute priority over detection power.

Future research should focus on selecting more robust likelihood ratio estimation techniques for
high-dimensional data, potentially through dimensionality reduction or regularization approaches. Ad-
ditionally, exploring methods to balance the type I/type II error trade-off in outlier detection under
shift represents an important direction, as does extending the weighted CP framework to handle more
complex forms of distribution shift beyond covariate shift.

By linking theoretical results with practical applications, this work aims to offer useful insights

and guidance for practitioners addressing the challenges of uncertainty quantification in non-stationary
environments.
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